Module B - Processes and Modelling

The main goal of Module B is to improve the understanding of processes leading to decadal climate variability. Several of these have already been included in climate models, but their importance has not yet been completely clarified. The simulation of other processes requires sometimes a higher resolution of the model or an extension with additional subsystems. Their incorporation leads to an improvement of the MiKlip prediction system in addition to a bias correction. To reach these goals we pursue the following objectives:

Objective B1: Assessing the effects of enhanced resolution and model bias
Objective B2: Investigating mechanisms of decadal variability
Objective B3: Coupling of additional climate subsystems

Impact of Observed North Atlantic Multidecadal Variations to European Summer Climate: A Linear Baroclinic Response to Surface Heating

2017 - Climate Dynamics, Vol. 48 (11–11), pp. 3547–3563

Ghosh, R. | W. A. Müller, J. Baehr, and J. Bader

Remote control on North Atlantic Oscillation predictability via the stratosphere

2017 - Quart. J. R. Meteor. Soc., 143 (703B). pp. 706-719

Hansen, F., Greatbatch, R. J., Gollan, G., Jung, T. and Weisheimer, A. (2017), . DOI 10.1002/qj.2958.

Hansen, F. | R.J. Greatbatch, G. Gollan, T. Jung and A. Weisheimer

State-Dependence of Atmospheric Response to Extratropical North Pacific SST Anomalies

2017 - Journal of Climate, 30 (2). pp. 509-525

Zhou, G. | M. Latif, R. J. Greatbatch and W. Park

Interannual variability of tropical Pacific Sea level from 1993 to 2014

2017 - Journal of Geophysical Research: Oceans, 122 (1). pp. 602-616

Zhu, X. | R.J. Greatbatch and M. Claus

Contact

Freie Universität Berlin, Institut für Meteorologie
Prof. Dr. Ulrich Cubasch

Freie Universität Berlin, Institut für Meteorologie
Dr. Kerstin Prömmel

Freie Universität Berlin, Institut für Meteorologie
Janice Scheffler